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Abstract

Currently available tomographic image reconstruction
schemes for photon migration tomography (PMT) are
mostly based on the limiting assumptions of small
perturbations and a priori knowledge of the optical
properties of a reference medium.  In this work a model-
based iterative image reconstruction (MOBIIR) method is
presented, which does not require the knowledge of a
reference medium or that the encountered heterogeneities
are small perturbations.  After a description of the major
code structure and a review of the mathematical
background, the clinically relevant examples of brain
imaging and breast cancer detection and are discussed.  It is
shown that ventricular bleedings in the brain can be
detected and that cysts and tumors in the breast can be
distinguished using the MOBIIR technique.
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1. Introduction
In recent years researchers have invested considerable
efforts towards tomographic imaging systems that use near-
infrared (NIR) light.1,2,3,4, Besides Photon Migration
Tomography (PMT) various other names are commonly
used for this novel imaging modality, such as Medical
Optical Tomography, Diffusion Tomography, or
Transillumination Imaging, to name a few.  Based on
measurements of transmitted and/or reflected light

intensities on the surface of the medium, a reconstruction is
attempted that provides the spatial distribution of the
optical properties, e.g. absorption coefficient, µa(r), and

scattering coefficient, µs(r),  inside the medium.  In initial
clinical trials, performed by various groups around the
world, PMT has shown great promise for brain-blood-
oxygenation monitoring in preterm infants, hematoma
detection and location, cognition analysis, and breast cancer
diagnostics.5,6,7,8,9

The technology for making light-transmission
measurement on human subjects is nowadays readily
available.5,6,10,11,12

 However, a major challenge remains the
development of computer algorithms that transform these
measurements into useful images of the interior of large
organs. Other than x-rays, the near-infrared photons used in
PMT do not cross the medium on a straight line from the
source to the detector. Light is scattered and absorbed
throughout the system. Hence, standard backprojection
method have only limited success,13,14

 and other analytical
reconstruction methods are only available for highly
restrictive problems.15,16,17

  In general, either the optical
properties of a reference medium have to be known, or/and
it has to be assumed that the heterogeneities constitute only
a small perturbation in a homogeneous background
medium.  To overcome this limitation research has
increasingly turned to model-based iterative reconstruction
(MOBIIR) algorithm.18,19,20,21

The goal of these algorithms is to reconstruct an image
of the optical properties (absorption, µa(r), and scattering,
µs(r), coefficients; r is spatial location) inside a medium,
from a given set M of measurements on the circumference
of the medium.  These iterative reconstruction schemes in
general consist of three components (see Fig. 1):  (1)
Forward Model: This model is a theory or algorithm that



predicts a set of measured signals, P, based on the position
of the light source and the spatial distribution, ζ = (µa(r),
µs(r)), of optical properties;  (2) Analysis Scheme: Here

an objective function, φ, is defined, which describes the
difference between the measured and predicted data. A
simple example is the least-square error norm
φ(ζ) ~ ( M - P(ζ) )2;. Since the problem is highly ill-posed,
a regularization term, R, is usually added to the objective
functions.  (3) Updating Scheme:  Once the objective
function is defined, the task becomes to minimize φ by
successively modifying the distribution ζ.  This means that
the parameters of the forward model have to be update to
generate a second, third, etc., prediction P, which can be
compared to the actual measurement data M.  The
reconstruction is complete once a distribution ξ is found
for which φ(ζ) is smallest.
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Fig. 1. Flow diagram of model-based iterative image recon-
struction scheme.

In this work I will first review some details of the
MOBIIR code, which was recently developed at Los
Alamos National Laboratory.20 The three components, (1)
forward model, (2) analysis scheme, and (3) updating
scheme, used in this particular algorithms are outlined and
discussed.  This is followed by several simulated
reconstruction examples, which illustrate the performance
of this code.  Besides simple reconstructions of well
defined objects in a homogeneous background,
reconstructions of breast and brain tissue are presented.

2. Mathematical Background

2.1. Forward Model
As a forward model that describes the photon propagation
in the turbid medium and predicts the measurements at the

detector position rd, we use in this study a 2-dimensional,
time-resolved diffusion equation:
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where U(x,y,t)  is the diffuse intensity and S(x,y,t) is the
source strength at position (x1,x2,x3) and time t .The
position-dependent absorption and diffusion coefficients
are denoted by µ a and D = c/(3[µ a+(1-g)µ s])
respectively. Here c is the speed of light in the medium and
g is the scattering anisotropy value, equal to the average
value of the cosine of the angle through which photons are
scattered. µ s’ = (1-g)µ s is known as the effective or
transport scattering coefficient.

The equation (1) is solved by replacing the temporal
and spatial derivatives by their finite-difference
approximations as follows:
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By substituting the finite-difference approximations (3, 4)
in the diffusion equation (1), we obtain a difference
equation that needs to be solved forward in time. The
finite-difference approximations to the spatial derivatives
(4) can be evaluated at time index n+1 or n, when we are
solving the difference equation for Un+1. Methods that
evaluate the spatial derivatives (4) at the past time instance
(n) are called explicit, while methods that evaluate the
spatial derivatives (4) at the present time instance (n+1) are
called implicit. Here we use a technique known as
"alternating directions implicit" (ADI) method. In this
method, the computation of Un+1 from Un is broken up in
three time steps. In the first 1/3 time step, only the spatial
derivative in one direction is evaluated at the present time
instance (implicit) and the other spatial derivatives are
evaluated at the previous time instance (explicit). In the
next 1/3 time step, the implicit and explicit directions are
switched, etc..

We can compactly write the ADI method  as

   AUn +1 /3 = (B + C)Un + Sn+1/ 4 (6a)

or Un +1/3 = A−1(B + C)U n + A−1Sn+1/4 (6b)

The structures of the matrices A and D = (B+C)
remain the same in all 3 1/3-time steps but the absolute
values of the matrix elements differ.  The advantage of the
ADI method is that by correct ordering the matrix A can
always be made triadiagonal, e.g.,  for the first 1/3 step:

Aii =1 + cµa

∆t

3
+ (Di+1/ 2, j ,k + Di −1/ 2, j ,k )

∆t

3∆x
(7a)



Ai ,i ±1 = −Di ±1/ 2, j,k

∆t

3∆x
(7b)

The matrix A needs to be inverted to compute Un+1/3

from Un (Eq. 6b).  Since A is always tri-diagonal the
inversion can be easily done in 0(N) computation.
Furthermore, the ADI method is unconditionally stable for
any value of ∆t.  From now on, we do not distinguish
between the three 1/3-time stesp for notational simplicity.
For further information on explicit, implicit and ADI

methods see and Press et al.22,23,24?

2.2. Analysis Scheme
The forward model is used to calculate detector responses
at a set of detector position Μ . Let Y  denote the
measurements of the diffuse intensity U for all s M.  We
will assume in this paper for simplicity that the
measurements are corrupted by uncorrelated Gaussian
noise.  However, note that the method we propose is not
limited to this choice, and we could as well have chosen a
more complex model such as poisson noise.  In this work
the objective function is defined as:

Φ(ζ ) = 1 / 2σ(s)2

s∈M
∑ (Ys

n −
n
∑ Us

n(ζ ))2 + R(ζ ) (8)

Here R(ζ) describes any additional regularization term,
which in general depends on the spatial distribution of
optical properties ζ = [cµa(r), D(r)].  For example, assume
that we know the spatial distribution of optical properties,
ζΗ, of a healthy breast without any tumors or cysts.  We
could use this information for the reconstruction by
defining

R(ζ ) = λ  
ζH (r ) − ζ (r )

σ(r)r
∑

p

. (9)

The parameter λ  is a weighting factor for the
regularization term, which determines the influence of the
regularizer on the final solution.  The regularization term
compares ζ at position r, with ζΗ at position r.  Differences

between ζΗ and ζ are more or less penalized depending on
the choice of p.  In this work we used p = 2.0.  Note that
the noise variance σ (s) is space varying.

The goal of the reconstruction algorithm is now to
minimize this objective function, Φ , by appropriately
choosing the system parameters D(r) and cµ a(r).

2.3. Gradient Calculation
The effective solution to optimization problems involving
many variables (here the spatial distribution of optical
properties) relies on knowing the gradient of the objective
function with respect to the variable, dφ /dζ .  In this
work we employ the method of reverse differentiation.. To
outline this method we assume for simplicity that no

regularization term is used, i.e. R(ζ ) = 0.  Furthermore we
chose the following notation: p,q,r,d Ω  are grid points;
d Ω d⊂ Ω  are detector positions on the boundary ∂Ω
and M denote measurments on the boundary ∂Ω . The
derivative of the objective function (Eq. 8) with respect to
the optical properties ζ is given by:

dΦ
dζ r

=
dΦ
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n
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n∈T
∑
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n
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(10)

Here we simply applied the chain rule, and the first term in
the sum is the outer derivative, while the second term is the
inner derivative of Eq. 8.  The second term is easily
obtained by differentiating Eq. 6a at time n+1/3 with
respect to the optical parameters, which yields:
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Equation 11 can be easily calculated by means of the
known intensity U and the matricies A,B and C of the
forward model.

More involved is the calculation of derivative of the
objectiove function Φ  with respect to the intensities Un,
which is the first term in Eq. (10).  We obtain this term
recursively by applying the chain rule and stepping
backward (reverse) in time from n+1/3 to n,

dΦ
dU p

n =
dΦ

dUq
n +1/3

q∈Ω
∑

dUq
n +1/3

dUp
n +

∂Φ
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n  . (12a)

with
dΦ

dUq
N =
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∂Uq

N  for N = max(n ∈T ) . (12b)

Here, ∂Φ ∂Up
n

denotes the change in φ  when only Up
n

is varied keeping all other variables constant, while
dφ /dUp

n denotes the total change in φ when Up
n  is varied

along with all variables that depend on Up
n .  Partially

differentiating Eq. 8 with respect to Up
n , we obtain
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The term dUp
n+1/3/dUp

n can again be calculated from
the forward finite difference Eq. 6b and we obtain:
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where Ip is a column vector that is zero everywhere except
at the spatial point p, where it is unity.

The method of adjoint differentiation provides an
efficient means to calculate the needed gradients for a
complex  sequence of calculations, such as the forward
simulation of the migration of photons described above.
Its power lies in its ability to calculate the derivatives with
respect to all the variables in a CPU time that is
comparable to the forward calculation.

3. Results

3.1. Problem Setup
The MOBIIR algorithm was tested by simulating time-
resolved measurements on heterogeneous media and using
this simulated measurements as input for the reconstruction
code.  The measurements were simulated with the finite-
difference, time-resolved diffusion code.  To mimic real-
world measurements, gaussian noise was added to each
measurement at a signal to noise (SNR) level of 30 db.
This is a typical value for time-resolved single photon
counting measurement25,26.  When single photon counting is
used, smooth data can be obtained over 2-3 orders of
magnitude. Signals that are approximately 1000 times
smaller than the maximum are increasingly effected by
statistical noise.

Once the detector readings are simulated, they are used
as the actual measurement data, Y, in the reconstruction
code.  To start the reconstruction program an initial guess
of the optical properties is necessary. If not stated
otherwise a medium with a constant diffusion coefficient
was used as a first guess.  Based on this guess the forward
code calculates the detector responses, U, and compares
these predicted measurements with the measurement data
Y, by calculating the objective function, φ (Eq. 7).  The
derivatives of φ  with respect to ζ at all grid points is
calculated and a new spatial distribution of D and χ µ a
is put in place for the next forward calculation is .  All
calculations were done on a SUN Sparc10 workstation.

3.2. Simple Systems
As a first example a simple heterogeneous system is
considered (Fig. 2a), which consists of a background
medium with D=1.5cm2ns-1 and three objects with
D=0.73cm2ns-1 and 6.7cm2ns-1 respectively. To simulate
an 8x8cm medium a 40x40 x-y grid with a spatial
resolution of 0.2 cm is used. The medium is surrounded by
16 source detector position. Moving the source around the
medium results in 16x15=240 detector readings. Each
detector reading consists of 50 time points, which are
equally space by ∆t=0.1ns. In the reconstruction code the
derivatives of each time-point with respect to each grid
point is calculated, which results in (240x50)x(40x40) =
12000x1600 = 19.200.000 derivative calculations in each
iteration step.  Fig 2b. shows the reconstructed D-image,
which was obtained  after 15 iteration (20  minutes). The

initial guess was a homogeneous medium with D=1.2
cm2ns-1.  The locations of the three objects are
reconstructed with high accuracy. The code is also able to
identify if the heterogeneity has a higher or lower diffusion
coefficient than the background. However, the absolute
values of D are not as accurate.  This has been observed
before by other researchers using different  diffusion based
image algorithms.

Fig. 2c shows the reconstruction of the absorption
coefficient.  Again the location of the absorbers is
determined with high accuracy, however the absolute
values are to small. Furthermore, some "cross talk"
between the D and the cµa reconstruction can be observed.
Strong scattering inhomogeneities are misinterpreted as
having a scattering and absorption component.  The reason
for this is not yet fully understand.
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Fig. 2a,b (a-top) The original simple heterogeneous
medium, which contains two inhomogeneities. The numbers
in the figure represent the diffusion coefficient D, in cm2ns-

1, at various locations in the media. (b-bottom) Here the
reconstructed medium after 15 iterations (20 minutes) is
shown. The arrows indicate the 16 source/detector
positions surrounding the medium. In this case the SNR =
30 db.
3.4 Brain Imaging
To test the algorithms in a more realistic situation, MRI
density maps were used to generated optical property maps
of the brain.  MRI imaging techniques allow to distinguish
between skin, skull, white matter, gray matter, blood and
cerebrospinal-fluid-filled spaces in the head.  These
different tissues appear in MRI scans with different
densities. From this an optical property map (cµa(r) , D(r))
is obtained by assigning different optical properties to
different density values. Fig. 3a shows such a segmented
scan for a slice through the head with the variations in D
Outstanding features are the cerebro-spinal-fluid-filled
ventricle in the center of the brain and a hematoma near the
forehead.  Furthermore, the brain is surrounded by
cerebrospinal fluid as can be seen in the light areas in Fig.
3a. Figure 3b shows the reconstruction based on
measurements from 12 source-detector positions. In this
case 60 iterations were performed which took about 70
min. While fine structures are not resolved, clearly visible
in the reconstruction are the ventricles and other areas
filled with cerebrospinal fluid. Also the hematoma at the
forehead can be seen.

Figure 3c shows the same reconstruction, only this
time the ventricles in the center of the brain were filled
with blood.  Ventricular bleeding often occurs in preterm
infants and leads to server brain damage or death of the
infant.  The reconstructions shown in 3 b and c, clearly
show that photon migration imaging can detect ventricular
bleeding and can possibly be used as an early warning
system, which allows physicians to react in time.

3.3. Breast Imaging
Another field of possible application of photon migration
tomography is breast cancer detection.  To simulate breast
image reconstructions, an MRI-density map of the breast

was converted into a map of optical properties. Fig. 4
shows such a segmented scan for a slice that contains the
nipple and chestwall.  Tumors consist of dense tissues that
are highly vascularized, therefore D is lower. On the
otherhand, cysts are filled with fluids that scatter less than
the surrounding tissue. Therefore, D is higher.  It was
assumed that the breast is immersed in a matching fluid
with optical properties similar to the one of the breast.  This
is a technique currently proposed by several researchers in
the field.

The challenge in this type of problem is to detect the
diseased tissue (here tumor and cysts) in a healthy
heterogeneous background. For this example the spatial
resolution  was chosen to ∆x = ∆y = 0.28 cm, resulting in a
32x56 grid for the finite-differencing scheme. 15
source/detector positions were assigned on three accessible
sides of the breast.

In this example we used as initial guess and
regularization term the information about the healthy breast
(Fig. 8a; see also Eq. 9). Fig. 8b shows the result of the
reconstruction after 10 iteration (~15min). The tumor and
one cyst are clearly visible.  Fig. 8c shows the ratio of the
reconstructed image and the initial guess.  The tumor
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Fig. 3a,b,c: Reconstruction example of the brain. The
numbers indicate the diffusion coefficient D [cm2ns-2] at
various positions.  The spatial resolution is 0.2 cm. The
circles in the bottom image indicate source and detector
positions.

and cyst becomes even more visible in this case.  This type
of procedure may be useful in cases where MRI data is
available, and one needs to obtain additional information
about a suspicious mass in the breast. Certain tumors or
cyst may not show up on an MRI image but may be seen
with optical techniques. The MRI-image could be used as
an initial guess and the reconstruction would show optical
irregularities.
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Fig. 4a,b,c: Image reconstruction of breast shown in Fig.
4a. In this case the initial guess is given by the healthy

breast (a-top), which does not contain any tumors or cysts.
The reconstruction after 30 iteration is shown in Fig.
4b(middle). As can be seen in Fig. 4c(bottom), an even
better localization is obtained by performing the product of
the ratios of the reconstruction and the initial guess for D
and cMUA.

4. Summary

We have developed a model-based iterative reconstruction
algorithm for time-resolved photon migration tomography.
This algorithm does not require small perturbation or
advance knowledge of a reference medium.  The algorithm
consists of three components: (1) a forward model that is
used to predict the measurements assuming a certain
distribution of optical properties. The forward model is
currently based on a finite-difference formulation of the
time-resolved diffusion equation; (2) an analysis scheme in
which an objective function is defined, which needs to be
minimized; (3) an updating scheme which allows to
subsequent guess the optical properties of the medium
based on the gradient of the objective function.

The code was successfully used to reconstruct simple
heterogeneous media, which contain well defined object in
a homogeneous background.  The code was also tested on
MRI generated optical property maps of the brain and the
breast.  The initial results are encouraging as tumors, cysts,
and other inhomogeneities appear to be reconstructable
even in an highly heterogeneous background.
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